C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Real Analysis-I

Subject Code :	5SC02MTC4	Branch: M.Sc (Mathematics)	
Semester : 2	Date 11/05/2016	Time : 10:30 To 1:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions .	(07)
	a.	What is cluster point of sequence ?	(02)
	b.	Define : limit inf of sequence.	(02)
	c.	Define: Borel set	(02)
	d.	What is outer measure of Q ?	(01)
Q-2		Attempt all questions	(14)
•	a.	Show that the outer mesure of an interval is its length.	(07)
	b.	What is measurable set? If E_1 and E_2 are two measurable set then show that	(07)
		$E_1 \cup E_2$ is also measurable.	
		OR	
Q-2		Attempt all questions	(14)
-	a.	What is measurable function ? If f and g are measurable then show that $f + g$ is also measurable function.	(07)
	b.	Show that the collection m of all measurable set is a σ -algebra.	(07)
Q-3		Attempt all questions	(14)
	a.	Let φ and ψ be simple functions define on set of finite measure E, then show that for any α and $\beta \int_E (\alpha \varphi + \beta \psi) = \alpha \int_E \varphi + \beta \int_E \psi$.	(07)

b. What is lebsege integrable function ? if f is bounded measurable function on a set of finite measure E .Suppose A and B are disjoint measurable subset of E then show that

Page 1 || 2

OR

Q-3 a	• State and prove bounded convergence theorem.	(07)
b	• State and prove fatau's lemma.	(07)

SECTION – II

Q-4		Attempt the Following questions .	(07)
	a.	What is BV[a,b] ?	(02)
	b.	Is the point wise limit of sequence of measurable functions measurable? justify	(02)
		your answer.	
	c.	What are $f(x) = sinx$ then what is $f^+(x)$?	(02)
	d.	Define : g_{δ} -set .	(01)
0-5		Attempt all questions	(14)
L.	a.	State and prove lebsege dominated convergence theorem.	(07)
	b.	State and prove Beppo -levis theorem	(07)
		OR	
Q-5	a.	State and prove Jordan's lemma.	(07)
	b.	State and prove Fundamental theorem of integral calculus.	(07)
Q-6		Attempt all questions	(14)
-	a.	Write Littlewood's three principles.	(03)
	b.	Apply BCT to Evaluate the following lebsege integral	(04)
		$\lim_{n \to \infty} \int_{[2,10]} \frac{nx}{1 + n^2 x^2} dx$	
	c.	Suppose f and g are in BV[a,b], then show that f+g and f.g are in BV[a,b] OR	(07)
Q-6		Attempt all Questions	
	a.	If f is measurable function then show that $f + c$ is also measurable.	(03)
	b.	What are the positive and negative variations of function $f(x)$.	(04)
	c.	Suppose f is integrable on [a,b], let $\int_a^x f(t)dt = 0$; $x \in [a, b]$ then show that	(07)

f=0 a.e.

